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SUMMARY 

Conventional thermodynamic approximations indicate a general non-linear 
dependence of partition coefficient on stationary-phase composition in mixed-solvent 
gas-liquid chromatography (GLC). The deviations from linearity have been calcu- 
lated for varying circumstances, and the fact that many reported experimental 
measurements appear to conform to an approximately linear relation is explained 
by an extrapolation of solubility-parameter theory_ The same thermodynamic treat- 
ment has been used to predict the behaviour of partially miscible stationary phases 
in GLC. 

INTRODUCTION 

About twenty years have elapsed since Ashworth and Everett’ showed that 
established thermodynamic theory, namely the Flory-Huggins theory, could be. 
usefully applied to the binary solutions encountered in simple gas-liquid chromato- 
graphic (GLC) systems. It is therefore surprising that extension of their treatment 
to mixed-solvent (or mixed stationary-phase) GLC should only have been reported 
relatively recently2s3, and that the partitioning characteristics of such columns in GLC 
should so long have been the subject of uncertainty’. For example, some ten years 
ago there was controversy as to whether a column packing prepared by coating the 
support with a mixture of two stationary phases would show the same partition 
coefficient for a given solute as a packing prepared by mechanically mixing the two 
separately coated supports (these two types of columns have been described as mixed- 
solvent and mixed-bed columns). The theory of Keller and Stewarts, who suggested 
no difference in behaviour, was criticised by Young6 who came to the opposite con- 
clusion. Surprisingly, experimental results seem to have been inconclusive4 in this 
matter. 

A bold hypothesis, based on examination of reported results of a large number 
of mixed-solvent GLC systems, was put forward by Purnell and co-workers’**. They 
suggested that existing thermodynamic theory could not account for the behaviour 
of mixed-solvents in GLC work, since they claimed that the dependence of the parti- 
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tion coefficient, KR(2.3,, on stationary phase composition was much simpler than any 
derivable from conventional theory. A simple linear relationship was suggested, 

K KRG) R(2). are the values of KR in the pure solvents 2 and 3, whilst 9-Z is the volume 
fraction of solvent 2 in the mixed stationary phase. 

A linear relation such as eqn. 1 would indeed imply that mixed-solvent and 
mixed-bed columns should be indistinguishable in their partitioning characteristics_ 
Whilst, admittedly, this relation cannot be derived from conventional theory, Martire 
briefly discussed theoretical circumstances which might approximate to such a linear 
relation. More recently Laub et al. I0 have applied Flory’s more sophisticated solution 

-theory to GLC systems involving ,z-alkane solutes in a binary mixture of large mol- 
ecule jr-alkane solvents and have shown that eqn. 1 is obeyed within 1 0/0 deviation_ 

If eqn. 1 is to be regarded as an empirical approximation, the “mixed-solvent 
linear approximation”, it is important quantitatively to examine the degree of ap- 
proximation involved and the circumstances under which it might be a very poor 
approximation_ Published examples of the latter range from some results of Little- 
wood and Wilmott” in 1966 to those of Perry and Tiley” in 1978. In both cases, 
systems showing deviations from linearity of 20-30% were reported and the use of 
eqn. 1 could lead.to very erroneous conclusions. 

THEORY AND CALCULATIONS 

Predictions based on conwntionai thermodwmnfcs of ternary solutions 

The starting point is the usual inverse relation between the GLC partition 
coefficient and the activity coefficient at infinite dilution of the solute, yr, 

where V, is the molal volume of the stationary phase and a is constant for a given 
solute at fixed temperature. Since GLC systems invariably comprise components of 
very different molal volumes, a useful first approximation for activity coefficients in 
non-ideal multicomponent solutions is givenI by, 

The symbols z and Q represent mole and volume fractions respectively. The second 
term in eqn. 3 is the Flory-Hu=, +ns combinatorial term, whilst the first term origi- 
nates from the Hildebrand-Scatchard treatment where the xii parameters quantify 
the energetic interaction between components i and j and Vi is the molal volume. 
Superficially one may say that the more positive the value of xii, the less the “affinity” 
between the components i andj. 

Nobody today would claim that eqn. 3 is anything other than a first approx- 
imation to a comprehensive thermodynamic treatment of solutions. When non- 
spherical and/or polar molecules are involved, it is unlikely that the x terms can be 
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regarded as unique composition-independent parameters, related solely to energetic 
interactions. 

That, despite its apparent complexity, eqn. 3 leads to a relatively straight- 
forward expression for partition coefficients in mixed solvents, was demonstrated by 
Perry and Tileylz who derived the relation, 

ln J&2.3, = it ln G(Z) + (1 - 5+) ln KRC3, t pr (1 - qZ) X, (4) 

where % = V,X~~, and xra. the solvent-solvent interaction parameter,. should be in- 
dependent of composition and of the nature of the solute. In fact these workers 
showed that using aliphatic and aromatic hydrocarbon solutes on mixed dinonyl 
phthalate-2,4,6_trinitrotoluene columns, eqn. 4 could be usefully applied despite the 
strongly polar nitro group5 on one solvent. 

It is not possible mathematically to approximate eqn. 4 to the linear form of 
eqn. 1 except for the very special case of KHcZ, = KRC3, and 2X ? 0. Otherwise, de- 
pending on the value of KR&KRt3), the ‘IKR ratio”, and of x, the KR - q plot may 
be concave to the 97 axis (positive curvature), convex (negative curvature) or may 
show a point of inflection_ 

Since mathematical analysis revealed no simple relation between eqns. 4 and 
1, resort was made to simple calculation. The percentage mean deviation from linear 
behaviour, as predicted by eqn. 4 and defined in Appendix I, was computed for 
varying values of the KR ratio and of x. The results are shown in Fig. 1. The maximum 
deviations from linearity, which are not necessarily around the mid-composition point 
are a factor of l-3-2.3 greater than the mean deviations shown. 
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Fig. 1. Mean deviation from eqn. 1 as predicted by eqn. 4, with solvent-solvent interaction as in- 
dependent variable and KR ratio as parameter. Points C, @ and x result from inflected KR-p plots. 

Since eqn. 4 gives KR as a continuous non-linear function of composition, it 
can never (except in the special case mentioned above) predict a mathematically 
zero mean deviation from linearity. The change from negative to positive curvature, 
which is shown in Fig. 1 with increasing x value, is necessarily accompanied by 
circumstances in which the KR - Q, plots show a point of inflection, where the mean 
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deviation may be small but never zero. Hence the curves in Fig. 1 are discontinuous 
in the regidn of zero mean deviation. 

An example of an inflected KR - q plot is shown in Fig. 2 where the computed 
mean deviation is not particularly small (9 %) and the maximum deviation is 20 %_ 
It is possible for a system of this kind that experimental measurements using only 
three or four composition points might lead to the conclusion that a linear relation 
is obeyed. Moreover, since the point of inflection occurs at pi = 0.55 with approx- 
imately zero deviation from the linear approximation, it means that a single measure- 
ment around the mid-composition point would almost certainly lead to a similar 
erroneous conclusion. 

Fig. 2. Example of an inflected K,-g, plot. Points x calculated from eqn. 4 with x = 2.0. Dotted line 
based on eqn. 1. 

Even allowing for understandable misjudgments of this kind and for experi- 
mental error, examination of Fig. 1 suggests that significant deviations from a linear 
relation should be the rule rather than the exception, and therefore significant dif- 
ferences in behaviour of mixed-solvent and mixed-bed GLC columns should have 
been observed. Yet this conclusion is generally contrary to published work on mixed- 
solvent columns where many cases of approximately linear behaviour are known*, 
nor is it consistent with experimental results on the two types of column. This anomaly 
can be resolved without resorting to any new and special theory for GLC systems. 

The mixed-sohent interaction parameter and the KR ratio 

In Fig. 1, the x (= V,Q value ranges from O-2.0. Zero is the “ideal” value, 
and the maximum of 2.0 was chosen because of partial miscibility considerations 
which are discussed later. The range of the KR ratio is l-10 which covers most but 
not all GLC systems. However, the assumption that the behaviour of GLC mixed- 
solvent systems is adequately represented by Fig. 1 implies that x= and the KR ratio 
are two completely uncorrelated and independent variables. Such an hypothesis is 
unlikely to be true. 

If we consider the case where the combinatorial terms are the same in the 
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two solvents (V, w V’), then the KR ratio is dependent on the individual solute- 
solvent interactions, xXz and xls_ If the KR ratio is close to unity then xu and xl3 
are approximately the same, and under these circumstances a low value of xu is 
much more probable than a high value. Indeed under these circumstances one might 
expect x23 to be close to zero, which would then result in an approximately linear 
KKT plot. 

A quantitative correlation of the KR ratio with ;cu can be derived from sol- 
ubility parameter theory in its simplest form which postulates that, 

xu = (6, - 6j12/RT (5) 

in which & and a,, the solubility parameters, are unique characteristics of com- 
ponents i and j. From eqn. 5, provided a,, the solubility parameter of the soltite_ is 

less than both 6, and S, for the solvents, it follows that, . 

The provision will normally, but not necessarily, apply to GLC systems’2. Combining 
eqns. 3 and 6 as shown in Appendix II, a relationship between ;cu and the KR ratio 
can be demonstrated involving xl2 as an independent parameter. 

Selecting a suitable range of values of x12, further calculations were performed 
of the predicted deviations from the mixed-solvent linear approximation and the 
results are shown in Fig. 3. The maximum value of xl2 = 15 mol dm-3 is justified 
on the basis of Appendix II which shows that normally for KRcz, > KRc3, then 
xl3 > x12, and since a value of 15 mol dms3 implies considerable “negative affinity” 
between solute and solvent 2, then even greater “negative affinity” would exist for 
solvent 3. In fact for most GLC mixed-solvent systems one might expect x12. to be 
in the range O-6 mol dmm3 giving xl3 in the range O-30 mol dme3 for KR ratio l-10. 

Fig. 3. Mean deviation from eqn. 1 as predicted by eqn. 4, with solute-solvent interaction as in- 

dependent variable and KR ratio as parameter. Dotted lines represent approximately the regions of 
inflected KR-q plots. 



Examination of Fig. 3 shows that provided the KR ratio (3, the mean devia- 
tion from linearity is not much in excess of 5 y0 for a considerable range of x12 and 
this should cover many reported studies (there is an exception to this mentioned 
below)_ As the KR ratio increases, the linear approximation becomes less satisfactory, 
although at low %‘? values, the inflected K,-g: plots, discussed previously, would be 
encountered. 

Appendix II shows that, on this treatment, xl2 and the KR ratio are not the 
only two parameters which determine the shape of the KR-q plot. The molai voIumes 
of the solvents V, and V, together with that of the solute, C’,, inevitably have some 
effect. Further extensive computations were carried out varying these parameters, 
but the main conclusions of the immediately preceding paragraph still held except 
in one respect. When V, < V,, then large (> 20%) positive curvature in the 
KR-cl; plot is predicted at low xlZ values for systems where the K, ratio is close to 
unity. This phenomenon has been reported l2 for the GLC systems xylene-dinonyl 
phthalate-Z,4,6-trinitrotoluene where the molal volumes of the xylenes exceed that 
of 2,4,6-trinitrotoluene. 

Partition coeficients in partially miscible solvent systems 
Eqn. 4 can only apply to a homogeneous mixture of the.two solvents, and 

when zZ3 becomes sufficiently large, solution theory predicts phase separation. If this 
occurs then the partition coefficient of the solute in the 
will be linearly related to the partition coefficients in 
solutions) thus: 

two-phase solvent medium 
the two phases (conjugate 

K R(Z.3, = c$K,’ + yl’KR1’ 17) 

where the superscripts refer to the two liquid phases I and II. 
Assuming zero excess volume of each phase, the volume fractions of the phases, 

Q;’ and v”, will be related to the system composition variab!e F~, by the usual 
material balance equations: 

cp’ = (v2” - Q2)/(TZ” - Qz’); 9” = 1 - Q’ 

Combining eqns. 7 and 8 gives the relation, 

(8) 

K mz.3, = [CCJ~” - dK,’ f (~2 - ~.z’)KR”ll(~z’* - ~2’) (99) 

Since the phase composition parameters, 9;?’ and y2”, are fixed for a given partiahy 
miscible system at fixed temperature and pressure, as also are KR’ and Kkr* (see 
below), it follows that eqn. 9 reduces to a linear KR-y relation for the two-phase 
region, thus, 

K R(2.3) = cO f cl~‘2 (10) - 

The coefficients C, and C, are obviously not the same as in eqn. 1, and are given by: 

C’ = (KR” - KR’),!((7-2” - fJ>?‘) 
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The partition coefficients in the two liquid phases, KR1 and &I* will be given by 
eqn. 4 where the composition parameters used in this equation -must now be 
~12 and q2 I’, the compositions of the two conjugate solutions. Accepting eqn. 3 for 
activity coefficients, the phase compositions are determined by the usuai thermo- 
dynamic condition for equilibrium, and are dependent on V2/V’ tid xB, the solvent- 
solvent size ratio and interaction parameter, as shown in Appendix III. 

Using selected values of the independent variables, examples of the behaviour 
predicted for a partially miscible solvent system are shown in Fig. 4. Again it can be 
seen that for such a system, the KR+p plots can show positive, negative or approx- 
imately zero departure from linearity depending on the KR ratio. The difference 
between the behaviour predicted for a completely miscible system and that for partial 
miscibility is the existence of a Iinear portion in the two-phase composition region, 
as predicted by eqn_ IO. Phase separation will therefore lead to a smaller mean 
deviation from linearity than othenvise would occur. It would, of course, also be 
possible with soIvents of very limited mutual solubility (e.g. ~7~’ s 0.01 and 
472” > 0.99) for the KR-q plot to be close to linearity over the whole system com- 
position range irrespective of the KR ratio, but this behaviour would indeed be 
restricted to such solvents of almost total immiscibility. 

Fig. 4. Examp!es of predicted KR-q plots for a partially miscible symmetric system, with KS r&o as 

parameter_ Full lines calcuiated from eqns. 4 and 10 as described in the text with V, = VS = 0.4 
dm3 mol-‘, V, = 0.1 dm3 mol-I, and xzli = 6 (see Table I). Dotted lines based ot eqn. 1. 

DISCUSSION 

The appIication of the conventional thermodynamic approximation of eqn. 3 
shows that the GLC partition coefficient can never be a strictly linear fuuction of 
stationary phase composition for mixed solvents, except in the extreme case of.com- 
plete solvent immiscibility. However, for systems where KR values in the two pure 
solvents are not widely different, e.g. within a factor of 3, then calculation shows 
that there might be a wide range of systems where linear bhaviour should be 
observed within approximately 5 %_ As the KR ratio inckases, greaEr deviations from 
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linear behaviour would normaily be expected, except that under some circumstances, 
inflected KR~ plots are predicted which might be mistaken .for a linear relation_ It 
follows that the mixed-solvent linear approximation of eqn. 1 must be used with 
considerable caution in predicting the behaviour of a mixed-solvent GLC column. 
The fact that several solutes may conform to the approximation for a given solvent 
system does not imply that all solutes will necessarily do so for the same system_ Ad- 
ditionally, the circumstances which lead to considerable deviations from the linear 
composition reiation will also yield significant differences in behaviour between 
mixed-solvent columns and mixed-bed columns. 

That eqn. 3 is only a first approximation to a comprehensive thermodynamic 
treatment must be reiterated. Based as it is on the Hildebrand-Scatchard regular 
solution model, eqn. 3 takes no account of specific “chemical” interactions either 
between solute and solvent or solvent and solvent. The formation of molecular 
complexes, whether by hydrogen-bonding or by charge transfer are excluded from the 
treatment. Weak complexing may not significantly affect’* the application of eqn. 4, 
but would certainly tend to invalidate any conclusions based on solubility-parameter 
theory such as given in Appendix II. Even in the absence of specific interactions or 
of polar forces, eqn_ 3 is by no means a wholly adequate representation of the molec- 
ular thermodynamics of liquid solutions’“. Nevertheless, it is the contention of this 
paper that the use of eqn. 3 and its corollary, eqn. 4, will give a better insight into the 
behaviour of mixed-solvent GLC coIumns than any pureIy empirical approximation. 

Finally, it wiI1 be appreciated that the thermodynamic treatment which has 
been used is that applicable to bulk liquid phases. No account has been taken of 
interfacial adsorption effects. For a homogeneous solvent system used at fairly 
high liquid loading on an inactivated support, there is no reason to believe that 
significant effects should occur”. But if liquid phase separation oc&s, adsorption at 
the liquid-liquid interface might be significant if a relatively large interfacial area 
is created. The mechanism of phase separation is likely to involve nucleation of the 
second liquid phase at either the solid-liquid or gas-liquid interface or both, but the 
physical “structure” of the resulting ‘-thin film” two-phase system remains a subject for 
specuIation. 

APPENDIX I 

Quantification of the deviation from the nuked-solvent linear approximation 

Deviation (OK,) = [K,(eqn. 4) - K,(eqn. l)J/K,(eqn. I) 

Mean deviation (%) = C~lOOdK,~/lO 

where dKR is computed at 0.1 intervaIs of 9: from 0 to 1, Whilst the mean 
deviation was calculated as an absolute value, an algebraic sign was then ascribed 
to it depending on whether the dK, values we& wholly positive (concave I&-Q; plot) 
or wholly negative (convex KR-pj plot). For cases where dK, changed sign (inflected 
K,-g7 plot), an algebraic sign was assigned to the mean deviation corresponding to 
that for the majority of the AK, values. 
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Substituting the expressions for I& from eqns. 4 and 1, with 9z = T, 

AK, = exp[q In KR(Z) + (1 - d In KR(3) -t ‘~(1 - &] 

MLu~, + Cl - Q))&zt3, 

_ 1 

Putting KRCz,/KRC3, =A the “KR ratio”, 

AK = expb Inf - 1nf-k In KR(2) -k dl - v)xJ 
R 

e, KR(2) + (I - dKR(2#- 

_ 1 

K 
= 

R(Z) exd(p - l) Inf+ d1 - 9)x] 

KzmrQ) + (1 - PM-I 

_ 1 

= fevl(l - d (m - lnf )I _ I 

@@--1)-l-l .- 

Hence the deviation from linearity is dependent on the KR ratio and on x, zind is 
independent of the absolute value of KRc2, or of &(3)_ It is noteworthy that using 
f= 1.35 and x = 0, which are effectively the parameters used in the studies of 
Laub er LII_‘*, yields a deviation of -1 -1% at p = 0.5, which is in good agreement 
with their sophisticated calculations. 

APPENDIX II 

Relationship between x9 and the KR ratio 
As shown elsewhere”, the Flory-Huggins term in eqn. 4 may be written as, 

FH(ri) = --In ri + 1 - I/r, (11) 

where ri = VJ Vi and V, = C xi Vi 
At infinite dilution of the solute, component 1, in either of the pure solvents, 
eqn. 3 gives”, 

Substituting in eqn. 2, 

Subtracting these two expressions and putting KRcz,/KRc3, = f, 
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Substituting for the Flory-Huggins functions from eqn. 11, 

(12) 

Takin_r eqn. 12 along with the solubility parameter relation eqn. 6, gives two 
equations relating the four parameters xi?, ail, xrj and J Therefore if we take 
zr,, the solute-solvent interaction parameter as an independent variable along with the 
KR ratio, f, then the value of zz3, the solvent-solvent interaction parameter will be 
determined via eqns. I2 and 6. This has been done for the computations which are 
shown graphically in Fig. .3_ 

It will be appreciated that choosin,o the KR ratio as an independent parameter 
is done for the convenience of comparing theory and experiment, since it is an 
immediately observable quantity. The reality of the situation is that the two solute- 
solvent interaction parameters, xi2 and zr3, together with the respective molal 
volumes. physically determine the observed KR ratio, and based on this hypothesis also 
determine the mixed-solvent behaviour. 

APPENDIX III 

Liquid phase contpositiom itr a partially miscible system 
For the solvent 2--solvent 3 system when phase separation occurs, the usual 

thermodynamic condition for equa!ity of component-activities in each phase must 
apply, which can be written as, 

y2’_r,’ = y2”_r~” and ~~‘(1 - x2‘) = ~~“(1 - x2”) (13) 

Assuming that eqn. 3 applies, 

(14) 

and similarly for phase II. 
The FH functions will be given by eqn. I I, e.g. 

FH(r,‘) = --In r2’ + I - I/rl’, 

where rz’ = V’iVz and V’ = X2’ V, + (1 - _Y~‘) 1’3. 

Since zero excess volume is implicit in this treatment, mole fraction and volume 
fractions are simply related, and combination of relations 14 and 13 results in a pair 
of non-linear simultaneous equations for the t\vo unknowns, which may be either 
s, ’ and s,” or g-2* and Q.~“. 
The independent parameters are V,, V, and xz3. 

Numerical solution of this problem is computationally possible (a straight- 
forward grid search proved as satisfactory as any method), but the probIem reduces 
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to just one non-linear equation for the symmetric case of Vz = V,, since then 
_r2’ = I,+’ etc. and v2” = 1 - q2 I. Some results for this case are shown in Table I. 

TABLE I 

COMPOSITION OF PARTIALLY MISCIBLE PHASES FOR A SYMMETRIC SYSTEM 
WHERE Vr = V,,= 0.4 dm-’ mol-’ AND V, = 0.1 dn? mol-’ 

x2, (mol &i-=) fi%z3 

12.5 5 
10 4 

7.5 3 
6 2.4 
5.5 2.2 

5 2.0 

(I%’ 

0.007 
0.02 13 
0.0707 
0.1707 
024s5 

No phase separation 
__ ~.~_. ~. 

% c= VIK23) _ __~~. 
1.25 
1.0 
0.75 
0.6 
0.55 

0.5 

It is apparent that, for the symmetric case, phase separation occurs at p3 M 5 mol 
dm-‘, and, with V, = 0.1 dm3 mol-‘, the maximum value of x in eqn. 4 for a 
miscible system would therefore be about 0.5. Honever for asymmetric systems 
( Vz f V3), lar_ger %?a values are possible without phase separation. For example, 
dinonyl phthalate ( V2 = 0.45 dm3 mol -‘),and 2,4,6-trinitrotoluene (V, = 0. I5 dm3 
mol-‘) are completely miscible” at SZ’ with x23 - - S mol dmm3, and with the xylenes 
as solutes (V, z 0.2 dm3 mol-I) then x values of around 1.6 are produced. 
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